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Russia 
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AbstracL Some general relationship have been derived in terms of the unresvicted HarWee- 
Fock method that define the conditions leading to the breaking of symmetry of oneelecaon 
orbilals at oxygen vacancies in oxides of the perovrkite family. Numerical calculations of the 
critical values of relevant parameters have been carried out. Exxperimenlal data are discussed in 
the light of the resulls obtained. 

1. Introduction 

AMO,-type oxides of the perovskite family can fairly readily be reduced and oxidized, which 
is usually associated with the presence in them of oxygen vacancies. This circumstance 
affects dramatically their electrical, optical and other physical properties. For that reason 
alone, the study of the electronic structure of the chief point defects in these crystals, namely, 
the oxygen vacancies, is deserving of attention. 

When an oxygen vacancy develops in an oxygen site, a donor level arises in the 
forbidden gap. So as to calculate its energy and wavefunction, customarily the so-called 
restricted Hartree-Fock (HF) method is invoked, i.e. it is assumed that the one-electron 
wavefunction is transformed with respect to one of the representations of a defect's point 
symmetry group [l-31. 

Yet it is known that often more exact results may be obtained by using the unrestricted HF 
method in which no symmetry restrictions are imposed on the one-electron wavefunctions. 
If the oneelectron wavefunctions have a lower symmetry than the point symmetry of the 
defect, it may so happen that this method will yield a lower energy for the given system 
of electrons. The breaking of symmetry may be caused by a strong electrostatic repulsion 
of electrons in transition elements, the polarization of the medium, etc. In the present 
work, general conditions are ascertained within the framework of the unrestricted HF method 
conducive to the breaking of symmetry of one-electron orbitals near oxygen vacancies in the 
oxides under discussion, critical parameters are calculated, and the effect of the localization 
of electrons on the electronic polarization is discussed. 

2. Unrestricted Hartree-Fock method 

In the present work we wish merely to illustrate the effect of electron localization. For 
simplicity we make use of the tight-binding method with the minimal basis and neglect the 
overlap integrals as well as all three- and four-centre integrals. The electrostatic interaction 
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of electrons will be taken into account only for transition elements. In this case, the HF 
method equation can be written in the following simplest form 

S A Prosandeyev et a1 

~ i m u  + ~iao. ina - €Ciao + C fie. jpcjpo = 0 (1) 
i8 

where Cia, are the components of the electron state vector in the site representation (i is 
the number of the atom, (Y is the number of the atomic orbital, U is the spin index that 
may assume values of 1 or 2), t is the matrix of hopping integrals, cieC are the energies 
of orbitals in an ideal crystal and !&,,iuu are the diagonal matrix elements of the defect 
potential. The latter can, in the case of the transition elements. be represented as 

Here U is the Hubbard parameter (energy of the electrostatic interaction between two 
electrons in the same atom), W,, are the constants determinable from the assumption 
that the perturbing potential is zero in the absence of a defect and qipp are the charges 
contributed by various orbitals to the ith centre 

where Nipp is the partial density of electron states and EF is the Fermi energy. 

3. Green functions method 

In the Green functions method, the density of electron states is given by 

Nip& = -Clln) G i p p i p p  

where the Green function G may be found from the solution to the Dyson equation 

(4) 

G = g + gVG. (5) 

Here g is the Green function of the ideal crystal. V is, as above, the defect potential matrix. 
Since the defect potential exists in a limited area of the crystal, the Green functions may, in 
that region, be found from the solution of a usually small number of linear inhomogeneous 
equations 

(1 - gV)G = g. (6) 

Formally this system may be solved by means of the Kramer rule 

(7) C. . - D .  . rBr.tPr - lPW.lS#/D 

where D is the determinant of the homogeneous part of system (6)  

D(6 )  = 111 - gvll (8) 
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while Di,jp.ipp is the determinant of the homogeneous part in which the corresponding 
column is replaced by a column of free terms. 

A special situation arises when the denominator in (7) goes to zero 

D(e) = 0. (9) 

The solutions of equation (9) yield the level energies E in the forbidden gap. Near these 
energies the determinant (8) can be expanded in a Taylor series, which, with (9) included, 
gives 

D(c) = D'(EJ)(E - el + io) + . . . . (10) 

The integration in equation (3) may, in the vicinity of the energies 61,  be carried out 
analytically. The result is 

where nl,, is the occupation number of the Ith level, and the integration is performed over 
the band of filled states. 

The total density of states can be obtained by analytical summation of partial densities 
(4), which yields 

N(E) =No(<) - ( l / l ~ ) h ( D ' / D )  (12) 

where No(<) is the density of states of the unperturbed crystal. The electron energy of the 
cell can, in the HF method, be estimated from the formula 

where F are the Slater integrals of the electrostatic interaction between electrons and the 
prime on the summation sign denotes elimination of self-interaction between the charges. 

In the particular case when the basis includes at each atom only one orbital and the 
electrostatic interaction is taken into account at transition elements only we have 

Note that the integral in (14) can be represented as the sum over the numbers of the local 
levels and the integral over the band of allowed states 

The energy of local levels in (15) is found from (9). the density of states from (12), and 
the charges from (1 1). 
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Figure 1. A t ”  nearest the oxygen vacancy in the 
AM03 oxides of the perovskile family. 

4. Defect potential 

Usually the dielectric constant EO in perovskite-type oxides is very great, ranging from 100 
to IOOO, which is why the defect radius ro is very small. Actually, the defect consists of 
few atoms nearest the vacancy. Let us set ro = a where a is the lattice constant. In this 
case, the defect will comprise the vacancy site and two nearest transition elements (1 and 
2 in figure I). 

To simplify the model as much as possible only one state at each atom will be included 
in the basis, namely the low-lying 4 state at the transition element and the pn state at 
oxygen. Subsequently, after elucidating the nature of a possible electronic instability, the 
model may easily be generalized. 

Unfortunately we do not know the values of the displacement of transition elements 
near the oxygen vacancy, which did not allow us to determine correctly the non-diagonal 
elements of matrix V. In view of this fact, at the first stage we set these elements equal to 
zero. In the case of the site from which the oxygen atom is removed, the electronic states 
of this atom will have to be eliminated from the basis-for that purpose the potential VO 
is made to go to infinity [41. The diagonal elements of m M x  V at the transition elements 
can be found by solving the following equations 

The dependence of the charges in (16) on the potential can be derived from formula ( I  1). 
The determinants necessiuy for the cdculation have in this formula the following form 

41 = Vo 

D2.2 = Vo 

For brevity the spin inde 

5. Green functions of the ideal crystal 

A detailed study of the etectronic structure of perovskite-type oxides 1.51 has shown that the 
inclusion into the basis of the tight-binding method of only the d states of transition elements 
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and p states of oxygen is quite sufficient for a fairly gwd approximation of augmented plane 
wave (APW) calculations. In this case the Hamiltonian matrix is factorized into blocks that 
correspond to the z and U bands; furthermore, for the x bands it is additionally factorized 
into three equivalent submatrices. The Green function matrix is factorized likewise. For 
simplicity we included in the basis the electron states that correspond to one submahix only 
of the x bands (figure 2): 

V,[1 - exp(-ik,a)] VJ1- exp(-ik,a)] 
(20) 

O 1, ( Vn[l - exp(ik,o)] 0 EP 

Ed 

h = Vx[l -exp(ik,o)] EP 

Here V, is the integral of the (pdn) interaction, a is the lattice constant and t d ,  E ,  are 
the diagonal matrix elements of the Hamiltonian for the atoms M and 0, respectively. 

Matrix (16) ha me eigenvalue 

Figure 2. The electron states included in the basis. 

= cp that does not depend on the wavevector 
(dispersionless band of non-binding states) and two more eigenvalues 

E” = EO + (-l)”[A‘+ 2V32 - cos(k,a) - COS(~~U)]]~’  (21) 

which may be termed the bands of the binding (v  = 1) and the loosening (U = 2) states. 
Here E O  is the half-sum and A is the half-difference between the energies and €d. The 
vectors of the electron states for bands (21) may be determined from the following formulae 

For the band of non-binding states they are 

1 - cos(k,ra) c,, = exp ( y )  ( 
2 - cos(k,a) - cos(k,a) 
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When the energies and vectors of electron states are known, the Green functions may 
be calculated by means of the following well known formula 

where the integration is carried out over the Brillouin zone with s2 being its volume; the 
summation is done over the electron state bands. For the case in hand, the integrals (24) 
may be reduced to the elliptical form. The result of this opexation is (e > 1) 

where 

( E  -EO)’  - A’ e = l -  
4 v,z 

while K(k) is the complete elliptical integral 

The obtained Green functions of electrons can easily be calculated since there are in 
the literature excellent analytical representations of total elliptic integrals. 

6. Neutral oxygen vacancy 

A neutral oxygen vacancy has at its donor level two electrons. They can either have 
delocalized wavefunctions adapted to the defect symmetry or be localized at different 
transition elements. In any case, the following symmetry restrictions can be placed on 
atomic potentials and charges in (16) 

v, 5E V I ]  = vu 

41 = 411 = 422 

v, = VI, = v,, 
425Eq412=421. 

In the light of the restrictions (28), equations (16) can be rewritten as 

VI = w t U@ vz = w + uq] 
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where 

w = WI I = wz2 = WIZ = w,, . 
One may now conveniently switch to new variables 

x = VI - v, y = v, + v,. (30) 

Equations (16) in these variables take the form 

Note that the explicit form of the determinants (17x19)  by which the charges 41 and qz 
are given is such that 

q l = A - B x  Q Z = A + B X  (33) 

where A and B are functions of xz and y .  By substituting (33) into (31) we obtain 

x = Z U B x .  (34) 

Evidently, a solution x = 0 exists for any parameter values of the problem and it will 
correspond to the delocalized state. A new (localized) solution is possible only when the 
following condition is met 

2UB = 1. (35) 

Making use of the above Green functions we have calculated the dependencies B(x)  
for definite values of the parameter y .  The results are given in figure 3. At x = 0, B ( x )  
has a finite value failing off sharply with increasing x (quadratically for small x ) .  Figure 3 
shows also a graphical solution to equation (35) for various U .  For U < U, this equation 
is seen to have no solutions, while in the case of U > Uc it does have two symmetrically 
lying solutions. Here 

U, = l/[2B(O)]. (36) 

Figure 4 depicts the dependence of Uc on the position of the level in the forbidden gap. 
The value of y was found from the equation D = 0 into which x = 0 was substituted. As 
expected, for shallow levels with strongly delocalized wavefunctions U, has been found to 
be relatively great, while for deep levels it is relatively small. 

Note that, as the level approaches the valence band, U, starts rising again. This can be 
explained as follows. First, in this energy region the impurity state possesses mainly the 
character of the 2p states of oxygen, rather than the d states of the transition elements, as 
is the case in the upper part of the gap. This situation lowers the electrostatic interaction 
of electrons because of the comparatively big radius of oxygen’s 2p orbitals. Secondly, 
near the top of the valence band the radius of the impurity state gets greater, which 
also decreases the electrostatic interaction. Both factors promote the delocalization of the 
electron’s wavefunction. 
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o j , , , , 3 * % , r ! z , e , , , > <  
- 4  -2 0 2 4 

x WVl 
Figure 3. The dependence B ( x )  for Sfl103 (y = 2 eV) and graphical solution 10 quation (35) 
for U =0.3 eV and U = 1 eV 

31 Conduction bond 

Valence bond 

-3 
0 1 2 3 

U. lev1 

Figure 4. The dependence of U, on Ihe energy 
(A) and charged (B) oxygen vacancy. 

‘el position in Ihe forbidden gap for n e u t d  

Let us discuss the nature of the localized solution. For this purpose. the model under 
consideration will be compared with the well known study on the Hz molecule (see e.g. 
[SI). The simplest model describing the spectrum of the HZ molecule in terms of the HF 
method is as follows. 

For each of the hydrogen atoms, only two oneelectron states xi., ( i  = 1,2; U = 1.2) are 
included in the bases, which differ from each other in their spin projection. The molecular 
orbitals will be constructed in the form of their superposition 
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The normalization conditions are here included automatically. The electron energy will be 
written with the electrostatic interaction of electrons at hydrogen atoms and the covalent 
component of chemical bonding taken into account 

Here f is the hopping integral (on assumption that I i 0). and €0 is a certain constant. 
From the necessary condition of the extremum of function (38) it follows that under the 
equilibrium conditions 

8r cos(28) + U sin(48) = 0. (39) 

The sufficient condition for the minimum of the function (38) has the form 

- 4t sin(2tP) + U cos(48) > 0. (40) 

It may be seen from inequality (40) that a delocalized solution 19 = 1r/4 exists at any value 
of the model parameters. However, for 

U > -4t 

it grows unstable and the electrons are in this case preferably localized near different 
hydrogen atoms. 

At first sight the two models described above are similar. Indeed, in both of them, 
when the Hubbard parameter U exceeds a certain critical value, the two electrons are 
localized at different atoms. However, there a~ also some essential differences. First, the 
wavefunctions of the two cations closest to the vacancy do not overlap and, accordingly, 
the hopping integral between the states of these two atoms equals zero. Here we may speak 
only about an indirect interaction between the atoms via the M-0-Ma..  . chains. Since 
the oxygen atom is not present in the vacancy site, these chains are quite long and the 
resulting indirect interaction proves to be relatively weak for deep states. Secondly, in our 
model the two electrons at the vacancy levels cannot be examined independently of the rest 
of the electrons because that would lead to physically wrong results. The point is that the 
charges contained in equations (13HlS) must be formed by all the electron states of the 
crystal that include both the discrete and the continuum spectrum. Moreover, in our model 
the charge at the atom is dependent on the depth of the impurity state, while in the Hz 
molecule this charge is a constant value equal to unity. 

As has been noted above, one aspect that is common to both models is that there 
is in them a sharp transition (phase transition of second kind) between the localized and 
delocalized states. However, as has been demonstrated in a number of publications [6,7], 
this transition is for the H2 molecule a consequence of approximations adopted within the 
framework of the HF method. When going beyond the limits of this method, the sharp 
transition does not occur. This may be accounted for by the consideration that in the 
absence of long-range order the sharp transition is not possible in principle. Consequently, 
it is equally impossible for a single oxygen vacancy. One may infer from this that the 
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inclusion of electron correlations must in this case, similarly to the H2 molecule, result in 
a smoothed transition. 

It should be emphasized in this connection that the ground state of the crystal under 
consideration is not magnetic and judging from the formal valency of the transition elements, 
it cannot be magnetic. Therefore, it is the oxygen vacancy that causes the instability of 
the electron system. When there is such a vacancy, two occupied electron states preferably 
localized at cations arise in the system. The localization of electrons at different atoms 
results from the electrostatic interaction between the electrons. 

Now, as a counterexample, we consider the magnetic system L2Cu04 in the dielectric 
phase. The ground state of this crystal is antiferromagnetic, which is quite well reproduced 
in terms of the unrestricted fiF method [SI. When an oxygen vacancy is created in the 
antiferromagnetic Cu02 layer of this system, the electrons in the impurity states are localized 
at different cations nearest to the vacancy [SI. It is hard to identify in this case the principal 
cause of such a localization for the following reason. As the magnitude of the Hubbard 
parameter decreases, the width of the forbidden gap in which the impurity levels are present 
grows smaller, and at a certain critical value this gap vanishes altogether. In this case the 
antiferromagnetism disappears and the crystal acquires metallic properties. 

S A Prosandeyev et al 

7. Single-charge oxygen vacancy 

This vacancy has at its donor level only one electron. In this case the sole symmetry 
restriction in equation (16) has the form 

WI = WI, = W*l w, FE w,, = w21. (42) 

Otherwise the four values of the potential have to be determined independently. 
Let us now go to new variables 

X I  = VI, - vz, 
YI = VI1 - v2, 

x2 = v, - V I Z  

yz = v, - VIZ  
(43) 

Equations (16) take in these variables the form 

XI = U(412 - 422)  

Y1 = 2WI t U(q12 t 422) 

*I = U(9l2 - 422) (44) 

(45) Y2 = 2wz+ U(42l t 411). 

From the explicit form of the determinants (17x19) through which the atomic charges are 
expressed in (1 I), it follows that 

Here the functions A2 and BZ depend only on x2 and yz while A I  and B1 are dependent on 
X: and YI. 

With (42) taken into account equations (46) assume the form 
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After eliminating x2 from these equations we have 

X I  = 4U2BiBzx1. 

This implies that a delocalized solution x, = x p  = 0 exists for any parameter value of the 
model. A new, localized solution arises when 

4UZB1BZ = 1. (49) 

The dependencies of B I  on X I  and Bz on x2 at predetermined yl and yz are similar to 
those obtained in the preceding section for the function B ( x ) .  From the condition (49) it 
follows that there exists a critical value of the Hubbard parameter 

above which the electron is preferably localized at one of the transition elements. 
The dependence of U, on the donor level position in the forbidden gap is shown in 

figure 4. We assumed that the level energy is independent of the electron spin projection. 
So as to determine the value of y y1 = yz. equation (9) was used into which x = XI = xz 
was substituted. We see that, similarly to the case of the neutral vacancy, U, are relatively 
great for shallow levels, while for deep ones they are small. At the same time, for the 
single-charge vacancy U, are appreciably greater compared to the neutral vacancy. 

Figure 5 lists calculated self-consistent values of potentials obtained by means of 
equations (16). These results show that, in the case of the deep levels, as U grows the 
electron rapidly localizes at one of the atoms and thus a dipole moment arises in the system. 
These findings confirm that for U > U, the electron ground state has a broken symmetry. 

2.0 
Conduction bond 

Valence bond 
-2.0 ~ / , , ,  , / ,  , ,  , r. 

0 0.4 0. 8 
qz-q12 

Figure 5. The dependence of the degree of elecvon localization on the energy level position in 
the forbidden gap for charged oxygen vacancy: U = 2 eV (A) and U = 1 eV (B). 

At the same time, a self-consistent calculation has shown that a solution with a 
broken symmetry exists even at U = 1 eV, despite the fact that, as may be seen from 
figure 4, U, t 1 eV for any position of the level in the forbidden gap. The point is that 
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when evaluating Uc we made use of the condition X I  = x2. which can be satisfied only 
approximately, whereas actually these quantities are related in a more complicated manner: 
see equation (42). The results of the self-consistent calculation may be regaded as more 
exact, so the critical values of (Ic given in figure 4 are, apparently, slightly overestimated. 

Let us now consider possible causes of the electron localization at the one-charge 
vacancy. First of all, we wish to point out that the model of H2 described in section 6 
can no longer be applied seeing that there is only one electron at the impurity level. 
Evidently, the localization of this electron can result either from non-symmetrical distortions 
of wavefunctions of valence electrons and/or from the lattice deformation. Consider in some 
detail the former cause (the latter will be dealt with in section 8). 

Let us assume that the electron at the impurity level is preferably localized at the first 
cation. In this case. the wavefunctions of the valence electrons are consbvcted in such a 
manner as to be localized to a greater degree at the second cation. This involves the lowering 
of the potential energy of the electrostatic interaction between electrons. However, the one- 
particle portion of the energy grows with the electron localization because the covalent 
component of chemical bonding is decreased in this event. At large U the change in the 
potential energy becomes predominant and the electrons are localized, while at small U the 
change in the kinetic energy is prevalent and the electron’s wavefunctions turn out to be 
delocalized. 

A simple graphical model illustrating the foregoing is represented by a two-centre 
construct with two electrons at different orbitals. Let the two equal centres have two states 
each x,b”’ differing in the average radius and the spin projection. The molecular orbitals are 
written as their superpositions. 

S A Prosandeyev et a1 

The electron energy is found with the Hubbard electron rejection and the covalent mixing 
of orbitals is taken into account 

E = EO + 211 cos 81 sin 91 + 2tz cos 192 sin $2 + !(cos’ 91 sin’ $2 + sin’ 61 cos’ 82)U (52) 

where EO is a constant and f l  , tz are the hopping integrals for the first and second state. The 
necessary condition for the extremum of function (52) is 

while the sufficient condition for the minimum of function (52) at 91 = $2 = 7r/4 leads to 
the following inequality (21 -= 0, t2 c 0) 

When this condition is violated. new solutions are stabilized that are localized at different 
atoms for which we may obtain from (53) 

(55) 
U4 - l&?t$ U4 - 16’t:t$ 

C0S’(2Sl) = cos’(2I9,) = 
U2(16r? + (I2) U2(16 t ;+U2) ’  



Breaking of symmetry of orbitals in perovskite-type oxides 9339 

It follows from the formulae derived that the greater is U compared to 11 and 12, the higher 
is the degree of electron localization. Note that even when one electron is completely 
localized at one of the atoms (which is, for example, possible when f l /U  = 01, the second 
electron is generally localized at the second atom only partially, and its localization is the 
greater, the less is tZ/U. 

Thus, owing to the electrostatic interaction, the valence electrons are ejected from the 
region in which the impurity state is localized and, at large U ,  this leads to a lowering of 
the system’s energy and, as a consequence, to the stabilization of the localized impurity 
state. 

As noted in section 6,  a sharp boundary between the states with the localized and 
delocalized electrons at the vacancy exists only within the framework of the unrestricted HF 
method. When the electron correlations are included, this boundary must vanish. In other 
words, there can exist no stationary multi-electron state with broken symmetry in the one- 
impurity system (on condition that the host lattice is stable with respect to the breaking of 
its symmetry). Consequently, the average dipole moment of the F centre must be zero. Of 
course, the time which the electron spends near one of the centres may, in terms of certain 
experiments, be quite large. The measurement time in such experiments must be less than 
the time of electron fluctuation between two potential wells. Eventually, the electron does 
create a stationary dipole moment, in case two cations near to the vacancy prove for some 
reason non-equivalent. This may occur if one of them is replaced by the impurity element 
or if the system as a whole is placed in a uniform electric field. 

Thus, the state of the oxygen vacancy with broken symmetry is not strictly speaking, 
the eigenstate of the isotropic Hamiltonian. The electron can exist in such a state for a 
limited time, hopping then to the same state but with the opposite direction of the dipole 
moment. At the same time, when possible non-symmetrical displacements of the ions 
nearest to the vacancy are taken into account, such a state may stabilize or, rather, the time 
of its existence can gmw appreciably. This may invalidate our assertion that the state with 
broken symmetry is quasistationary. 

8. Two-impurity model 

In the foregoing we examined the electron structure of an oxygen vacancy near which 
there are two equivalent transition elements (belonging to the main crystal lattice). The 
potentials at these elements were different from the potentials at the atoms of the main 
lattice on account of the electrostatic field of the oxygen vacancy. Having analysed that 
model, we have found that there is a critical value of the Hubbard parameter U above 
which the one-electron wavefunction lowers its symmetry in the unrestricted HF method. A 
similar situation is equally conceivable in the event when the lattice contains two closely 
positioned equivalent impurity elements in the absence of any oxygen vacancies. In this 
case the difference of the potential at the foreign atoms from that at the host crystal atoms 
can be accounted for by the fact alone that here we have to do with different chemical 
elements, which, accordingly, possess dissimilar orbital electron energies. 

The above-derived formulae remain valid for the two-impurities model provided that 
the determinants (17H19) are replaced with the following ones: 
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If there are two electrons at the donor level, they can either have delocalized wavefunctions 
adapted to the given symmetry (U c (Ic) or be localized at different impurity elements 
(U > Uc). One electron at the donor level can have a delocalized orbital (U c Uc) or be 
localized at one of the impurities and form a dipole moment (U z (le). 

9. Instability caused by polarization of the medium 

Earlier we reasoned from the assumption that the instability of the delocalized HF state results 
from the electrostatic electron interaction. However, in polar dielectrics the polarization of 
the medium may be a factor equally effective in bring on the instability. To illustrate 
this point, let us consider the following simple model. Surround both of the two transition 
elements with spheres of radius ro and assume that inside these spheres the dielectric constant 
of the medium is cm while outside them it is €0 (letting €0 >> 6”). When interference 
effects are neglected, the addition to the electron energy stemming from the polarization of 
the medium will be given by the sum of the electron charges squared in the first and the 
second spheres 

The product of the multiplication of charges in (59) appears only with the inclusion 
of the interference of the fields induced by the first and second charges. Neglect of this 
contribution is similar to the assumption used above when the inter-centre electrostatic 
interaction was not taken into account. 

On condition of the complete localization of the electron in both spheres 

QI + Qz = 1. (60) 

Evidently, under the additional condition (60) the minimum of the function (59) is attained 
in the event of the complete localization of the electron in one of the two spheres. An 
increase in the electron’s kinetic energy is a factor counteracting this development. If this 
increase is smaller than the lowering of the potential energy, the HF solution delocalized 
over the two atoms will be unstable. 

10. Discussion of experimental data 

The determination of the depth of oxygen vacancy levels was done by electrical [9 ]  and 
optical [IO] methods. It has been found that the energy of the maximum in the optical 
absorption spectrum of the oxygen vacancy in SrTiOs (- 1.7 eV) appreciably exceeds 
the thermal activation energy (0.35 eV) obtained from the temperature dependence of the 
electrical conductivity. Calculations carried out in [3,8] have shown that this can be 
explained by the low probability of the optical excitation of an electron to near-boaom 
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conduction-band states. Thus the depth of the level of a singlecharge oxygen vacancy is 
0.35 eV for SrTiO3. For other oxides of this family it lies in the 0.2-0.7 eV range [9]. 
Our calculations show that this result corresponds to 11, = 1 to 2 eV. As to the zero-charge 
vacancies, their levels are very shallow-of the order of some hundredths of an eV with 
Uc being in this case 2 eV. So the breaking of symmetry of one-electron orbitals is more 
probable at single-charge vacancies than in the zero-charge case. 

The specificity of the state characterized by disturbed symmetry of one-electron orbitals 
lies in the fact that a great dipole moment is associated with it. Indeed, the maximal estimate 
of the dipole moment of an electron localized at one of the transition elements amounts to 
p = e a / 2  where a is the lattice constant and e is the electronic charge. Hence, one may 
argue that the loss of symmetry of one-electron wavefunctions at oxygen vacancies could 
be experimentally detected from the electron polarization. Let us examine this assumption. 

First we estimate the electron polarization in a two-well two-level model in which 

P, = (np/3)tanh(eE,a/kT) (61) 

where n is the concentration of vacancies and E is the electric field vector. Usually 
eEa << kT and in this case formula (61) simplifies to 

P, = (npea/6kT)E,.  (62) 

Accordingly, the contribution of vacancies to the polarizability looks as follows 

a = npea/6kT. (63) 

After substituting into (63) the maximal estimate for p at T = 300 K and a = 4 A we come 
to a = 1 at n = 102' CIII-~. In weakly reduced oxides of the perovskite family n = IO" to 
IO'* ~ m - ~ .  

It follows from the above-presented data that the thermal polarization is negligible in 
the case under examination. Another situation arises when an oxygen vacancy develops at 
the Curie temperature. In this case even a small amount of defects can lead to macroscopic 
changes of crystal parameters. So, it is known that oxides increase the perovskite's 
polarization. This can be explained by the presence at the oxygen vacancy of a dipole 
moment, which arises owing to the breaking of symmetry of the one-electron wavefunction. 
Point dipoles can influence the crystal parameters similarly to an external electric field. A 
like effect may be obtained by substituting a smaller atom for another one (e.g. in KTaO3:Li. 
Li is substituted for K). In the latter case the smaller atom is shifted and creates the dipole 
moment. In contrast to this, a vacancy without the dipole moment leads to the decrease 
in the polarization like in the case with the external pressure (e.g. VA in the ferroelectric 
ATiOs). Note that the asymmetry of the oxygen vacancy in perovskites and corresponding 
asymmetric scattering of the caniers by this defect can give contributions to field-even and 
photovoltaic currents in ferroelectrics observed in various experiments. 

Experimental research into polarization processes gives only indirect information about 
symmetry of one-electron orbitals near oxygen vacancies. Apparently, spectral methods 
could be more productive, in the first place, electron paramagnetic resonance (EPR) 
spectroscopy. So far it is only known [I21 that, upon reduction of SrlJO,, the EPR spectra 
exhibit strengthening of the signal that corresponds to Ti3+. This points indirectly to the 
localization of the oxygen vacancy electron at one of the Ti atoms nearest to this vacancy. 
Such a development transforms this atom from the tetravalent state (in SrTiO3, Ti atom's 
valency is 4) into the trivalent one (obviously, formal valency is implied). 
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Some additional evidence could be obtained by measuring the frequency and temperature 
dependencies of the loss angle tangent. Presently, only for some systems are there 
indications of the existence of the corresponding relaxational maxima. However, their 
dependence on the oxidation and reduction degree of the samples has not so far been 
experimentally studied. 

11. Conclusion 

The present study has shown that in the unrestricted HF method the one-elecbon orbitals 
located in the vicinity of an oxygen vacancy in perovskite-type oxides can at U > U, 
(U is the Hubbard parameter) have a lower symmetry than the symmetry of the defect. 
Calculations in terms of a simple model in which the basis included only one atomic orbital 
at each atom indicate the following. 

In the case of a neutral vacancy, U, is, for deep levels, of the order of some tenths 
of an eV while for shallow levels it grows and may exceed 1 eV; as regards the single- 
charge vacancy, there in the case of deep levels to 1-2 eV and for shallow levels it may 
attain even greater values. Experimental data as well as results of numerical calculations 
[9] show that neutral vacancies have in perovskites relatively shallow levels of the order 
of some hundredths of an eV whereas levels of the single-charge vacancies are deep, 
viz. 0.2-0.6 eV. This evidence, apparently, justifies the conclusion that the localization 
of electrons is hardly possible at a neutral vacancy, the less so in view of the fact that 
at room temperature they are strongly ionized. In our judgment, the localization of the 
electron at the single-charge oxygen vacancy is a more realistic assumption; moreover, the 
polarization of the medium may promote such a localization. However, numerical estimates 
have shown that the experimental determination of the degree of electron localization near 
oxygen vacancies from data on the crystal polarizability is not effective-rather, detailed 
spectroscopic investigation is needed for that purpose. 

Unfortunately, it is impossible, in terms of the HF method, to elucidate the question as 
to how the inclusion of electron correlations may alter the results obtained. But calculations 
canied out earlier, for finite clusters with cyclic boundary condition [SI, have shown that 
the value of the total electron energy found by unrestricted mmethod is substantially closer 
to the exact value derived by means of the direct diagonalization of the Hamiltonian than 
that obtained in the restricted version of the method. In other words, the use of orbitals with 
broken symmetry is a convenient means to improve the standard restricted HF method. This 
is also evidenced by the results of a calculation on the dispersion of the model Hamiltonian 
[SI which show that this dispersion is substantially decreased when switching from the 
restricted to the unrestricted HF method. We may therefore argue that the results derived in 
the present work can essentially improve the model of the electronic structure of oxygen 
vacancies in perovskite-family oxides which was previously developed on the basis of the 
restricted HF method. Next we describe some principle features of our model and compare 
it with other existing models of atomic vacancies. 

In the conventional theory of the F centres it is assumed that an atomic vacancy gives 
rise to a local potential well that binds the electron. For example, in alkaline-haloid crystals 
the anion vacancy has high barriers near cations owing to the fact that the wavefunction 
of the F centre must be orthogonal to the lower-lying states (for example in KCI to the 3s 
slates of K). This leads to the ejection of the electron from the area where the cations are 
located. In addition to that, the Madelung potential lowers the potential in the defect centre, 
which is consistent with the orthogonalization of the states at cations and binds the electron 
at the F centre. 
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In contrast, the theory of the electronic structure of atomic vacancies in covalent crystals 
considers that the local state in the forbidden gap arises already at the stage of the breaking 
of chemical bonds. According to this theory, the atomic vacancy, for example, in Si has 
local states that arise simply because the states of the atom being removed from the lattice 
are eliminated from the basis of the atomic states. Formally, this is achieved by localizing 
the vacancy potential at only one defect site and by letting the matrix element of this 
potential go to infinity 141. 

A more complex situation occurs in crystals with the intermediate character of chemical 
bonding to which the perovskite family oxides belong. It has been shown that in this 
case the rupture of chemical bonds does not lead to the appearance of local states in the 
forbidden gap. At the same time, the localization of the electron in the well created by the 
atomic vacancy does not take place either (rather, there is no well in this event). Indeed, on 
account of the presence in ionocovalent crystals of relatively low-lying empty electron states 
of cations and the covalency of chemical bonding, the electron is drawn from the centre to 
the cations. One may, of course, imagine a peculiar situation when the defect centre state 
is not mixed by the Hamiltonian with the low-lying cation states, but such a state can be a 
ground state only in the case of weak covalency of chemical bonding characteristic of ionic 

Thus, unlike ionic crystals, the electron at the F centre in oxides is drawn to the cations 
nearest to the vacancy. The stabilization of that state occurs on account of the potential at 
cations brought on by the vacancy and the medium polarization. The deeper this potential, 
the greater is the electron's binding energy. 

Next we turn to the question concerning the form of the wavefunction of the electron 
at the neutral and charged oxygen vacancies. In [l-31 it was asserted that in these cases 
the one-electron wavefunction is delocalized with respect to two cations nearest to the 
vacancy, and at these has equal weights. Here a certain analogy may be found with the 
well known study of the electron structure of the Hz molecule, where it was shown that, 
with increasing distance between the nuclei, the delocalized one-electron state becomes 
unstable and, after exceeding a certain critical distance, the electrons are localized near 
different atoms. We have shown in the present work that an analogous localization of 
electrons occurs near different cations closest to the oxygen vacancy. Moreover, owing to 
non-symmetrical distortions of the wavefunctions of valence electrons, such a localization 
takes places even at the F centre. However, in the physical interpretation of these results 
one has to bear in mind that a state with a broken symmetry of the point defect is not. 
strictly speaking, stationary. 

crystals. 
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